

Rule-based Modeling

William S. Hlavacek

Theoretical Division

Los Alamos National Laboratory

Outline

- 1. The motivation for rule-based modeling
- 2. Basic concepts of rule-based modeling
- 3. An example model specification
- 4. Methods for simulating a model
- 5. Suggested exercise

The need for predictive models of signal-transduction systems

- These systems mediate cellular information processing and regulate cellular phenotypes
- They are complex
- Molecular changes that affect cell signaling cause/sustain disease (e.g., cancer)
- Numerous drugs that target signaling proteins are currently in clinical trials
 - Spectacular successes (e.g., imatinib treatment of CML)
 - But results are disappointing for many patients
- Many clinical trials are underway to test combinations of drugs (clinicaltrials.gov)
 - There are too many combinations to consider all possibilities in trials

Value added by modeling

- We can use models to organize information about a system with precision
 - Introduces greater rigor and discipline
- We can determine the logical consequences of a model specification
 - Design principles can be elucidated (key for synthetic biology)
 - Certification (essential for personalized medicine)

A signaling protein is typically composed of multiple components (subunits, domains, and/or linear motifs) that mediate interactions with other proteins

ΤCRαβ

PRS: PxxDY

ITAM: YxxL/I(x₆₋₈)YxxL/I

Kesti T et al. (2007) J. Immunol. 179:878-85.

There are many protein interaction domains

Some domains are multivalent and mediate oligomerization via domain-domain interactions

A hexamer of death domains

Weber and Vincenz (2001) FEBS Lett.

C.-T. Tung (Los Alamos)

Domain-motif interactions are often controlled by post -translational modifications

There are many possible protein phosphoforms!

Schulze WX et al. (2005) Mol. Syst. Biol.

518 protein kinases (~2% of human genes)

There are phosphatases too!

Manning G et al. (2002) Science 298:1912-34.

Signaling proteins typically contain multiple phosphorylation sites (S/T/Y)

Phospho.ELM database v. 3.0 (http://phospho.elm.eu.org)

There are many different kinds of post-translational modifications of proteins

Priming – cooperative phosphorylation of neighboring kinase substrates is common

Coba MP et al. (2009) Sci. Signal.

Distinct time courses of phosphorylation for different amino acid residues within the same protein

Schulze WX et al. (2005) Mol. Syst. Biol.

Olsen JV et al. (2006) Cell 127:635-48.

Combinatorial complexity – a serious problem for the conventional modeling approach

Epidermal growth factor receptor (EGFR)

9 sites => 29=512 phosphorylation states

Each site has ≥ 1 binding partner

=> more than 39=19,683 total states

EGFR must form dimers to become active

=> more than 1.9x10⁸ states

EGF

ECD

TM

PTK

Y869

Y915

Y944

Y1016

Src

PLC-y

The textbook approach

Conventional representation of a biochemical reaction network

Network (model) size tends to grow nonlinearly (exponentially) with the number of molecular interactions in a system when molecules are structured

Network size increases nonlinearly when an extra interaction is considered

16 chemical species 60 unidirectional reactions

 $[+] \hookrightarrow []$ There are only three interactions. We can use a "rule" to model each of these $\Box + \Box \Longrightarrow \Box$ interactions.

Science's STKE re6 (2006)

If you can write the model by hand, it may look like a mechanistic model, but it's probably just a complicated fitting function

EGFR signaling

Rule-based modeling solves the problem of combinatorial complexity

Inside a Chemical Plant

- Large numbers of molecules...
- ...of a few types
- Conventional modeling works fine (a good idea since 1865)

Inside a Cell

- Possibly small numbers of molecules...
- ...of many possible types
- Rule-based modeling is designed to deal with this situation (new)

Outline

- 1. The motivation for rule-based modeling
- 2. Basic concepts of rule-based modeling
- 3. An example model specification
- 4. Methods for simulating a model
- 5. Suggested exercise

Rule-based modeling: basic concepts

Graphs represent molecules, their component parts, and "internal states"

Molecules, components, and states can be directly linked to annotation in databases

Graph-rewriting rules represent molecular interactions

A rule specifies the addition or removal of an edge to represent binding or unbinding, or the change of an internal state to represent, for example, post -translational modification of a protein at a particular site

 $TCR(Y111\sim p) + ZAP70(SH2) < -> TCR(Y111\sim p!1).ZAP70(SH2!1)$

Structured objects are naturally represented by graphs, so we use graphs to represent molecules and molecular complexes in signal-transduction systems

Use graph-rewriting rules to represent interactions

begin reaction rules

EGF(R)+EGFR(L1,CR1)<->EGF(R!1).EGFR(L1!1,CR1)

end reaction rules

Outline

- 1. The motivation for rule-based modeling
- 2. Basic concepts of rule-based modeling
- 3. An example model specification
- 4. Methods for simulating a model
- 5. Suggested exercise

Early events in EGFR signaling, illustrated with the same (sub)graphs used to specify a rule-based model for these events

EGF = epidermal growth factor

EGFR = epidermal growth factor receptor EGF

1. EGF binds EGFR

ecto
O
O

EGFR

- 1. EGF binds EGFR
- 2. EGFR dimerizes

- 1. EGF binds EGFR
- 2. EGFR dimerizes
- 3. EGFR transphosphorylates a copy of itself

Grb2 pathway

- 1. EGF binds EGFR
- 2. EGFR dimerizes
- 3. EGFR transphosphorylates
- 4. Grb2 binds phospho-EGFR

Grb2 pathway

- 1. EGF binds EGFR
- 2. EGFR dimerizes
- 3. EGFR transphosphorylates
- 4. Grb2 binds phospho-EGFR
- 5. Sos binds Grb2 (Activation Path 1)

- 1. EGF binds EGFR
- 2. EGFR dimerizes
- 3. EGFR transphosphorylates
- 4. Shc binds phospho-EGFR

- 1. EGF binds EGFR
- 2. EGFR dimerizes
- 3. EGFR transphosphorylates
- 4. Shc binds phospho-EGFR
- 5. EGFR transphosphorylates Shc

- 1. EGF binds EGFR
- 2. EGFR dimerizes
- 3. EGFR transphosphorylates
- 4. Shc binds phospho-EGFR
- 5. EGFR transphosphorylates Shc
- 6. Grb2 binds phospho-Shc

- 1. EGF binds EGFR
- 2. EGFR dimerizes
- 3. EGFR transphosphorylates
- 4. Shc binds phospho-EGFR
- 5. EGFR transphosphorylates Shc
- 6. Grb2 binds phospho-Shc
- 7. Sos binds Grb2 (Activation Path 2)

Summary of molecules and their interactions in a simple model of early events in EGFR signaling

EGFR(1,d,Y1092~U~P,Y1172~U~P)

Blinov et al. (2006)

Combinatorial complexity of early events

Monomeric species

Combinatorial complexity of early events

Combinatorial complexity of early events

Combinatorial complexity of early events

Combinatorial complexity of early events

Dimeric species

A conventional model for EGFR signaling

The Kholodenko model*

5 proteins

18 species 34 reactions

16 Grb Ŗ-G R-Sh-G G-S-SOS SOS RP sos Ras Ras

*J. Biol. Chem. 274, 30169 (1999)

Assumptions made to limit combinatorial complexity

 Phosphorylation inhibits dimer breakup

No modified monomers

Assumptions made to limit combinatorial complexity

Reminders

Graphs represent molecules, their component parts, and states

A (graph-rewriting) rule specifies the addition or removal of an edge to represent binding or unbinding, or the change of a state label to represent, for example, post-translational modification of a protein at a particular site

A model specification is readily visualized and compositional

Molecules, components, and states can be directly linked to annotation in

databases

Ste7	Fus3	keat
S359/T363	T180	
pS	none	kcat_Ste5Ste7pSFus3_pY
pS	Τq	kcat_Ste5Ste7pSFus3pT_pY
pSpT	none	kcat_Ste5Ste7 <i>pSpT</i> Fus3_pY
pSpT	Τq	kcat_Ste5Ste7 <i>pSpT</i> Fus3 <i>pT</i> _pY

Ty Thomson (MIT) - yeastpheromonemodel.org

Molecules are modeled as graphs

Molecules

Nodes represent components of proteins

Y components may have labels:

Molecular complexes are simply connected molecules

No need to introduce a unique name (e.g., X₁₂₃ or ShP-RP-G-Sos) for each chemical species, as in conventional modeling

Edges represent bonds between components

Bonds may be intra- or intermolecular

Patterns (subgraphs) define sets of chemical species with common features

A pattern that matches EGFR phosphorylated at Y1092

Suppressed components don't affect match

A reaction rule, composed of patterns, defines a class of reactions

Patterns select reactants (by matching graphs representing chemical species) and specify a transformation of the graphs representing reactants - Addition of bond between EGF and EGFR in this case

Dimerization rule eliminates previous assumption restricting breakup of receptors

EGFR dimerizes (600 reactions are implied by this one rule)

No free lunch: According to this rule, dimers form and break up with the same fundamental rate constants regardless of the states of cytoplasmic domains, which is an idealization.

Rule-based version of the Kholodenko model

- 5 molecule types
- 23 reaction rules
- No new rate parameters! Q: How? A: a rule provides a coarse-grained description of the reactions implied by the rule. All these reactions are parameterized by the same fundamental rate constant(s).

Outline

- 1. The motivation for rule-based modeling
- 2. Basic concepts of rule-based modeling
- 3. An example model specification
- 4. Methods for simulating a model
- 5. Suggested exercise

Consider interaction of a trivalent ligand with a bivalent cellsurface receptor

R.G. Posner (TGen) and P.B. Savage (BYU)

Signaling by FceRI begins with ligand-induced receptor clustering

Trivalent ligands

•Compound 6a

Org. Lett, 9:3551

Rule-based model specification corresponding to equilibrium model of Goldstein and Perelson (1984)

Equivalent-site TLBR model

Molecules

Interactions (reaction rules)

No cyclic aggregates

Goldstein-Perelson and TLBR models

Equilibrium properties:

(a)

0.4 0.3 0.2

•Goldstein and Perelson (1984) Biophys. J., 45:1109

-Yang et al. (2008) Phys. Rev. E, 78:31910

Protocol for "generate-first" simulation

- •1. Define molecules as *graphs* and interactions as *graph-rewriting rules*.
- 2. Specify concentrations and rate constants
- 3. Generate the implied reaction network and then simulate the network dynamics using conventional methods

•Faeder, Blinov, and Hlavacek, Methods Mol. Biol. (2009)

"Generate-first" method starts with seed species

After first round of rule application

After the second round of rule application

Gillespie method: generate-first or on-the-fly simulation

- -Set **x**(0)
- •Calculate **a**(0), $a_0(0) = \sum_i a_i(0)$

-Update **x**, **a**(*t*), a₀, *t*

Update only $a_i(t)$, $i \in dep(r)^*$

$$\mathbf{x}(t+\tau) = \mathbf{x}(t) + \mathbf{S}_r$$

*rxn q depends on rxn r iff. a reactant of rxn q is a reactant or product of rxn r. Select next event time $\tau = -\ln \rho_1 / a_0(t)$

 $t = - \min \rho_1 / a_0 (t)$

Select next reaction, r

 $\min r \text{ s.t. } \sum_{i=1}^{r} a_i(t) \ge \rho_2 a_0(t)$

 a_1/a_0 a_2/a_0 a_3/a_0 a_4/a_0

0 × 1

TIONAL LABORATORY

Rule-derived network can be too large to simulate using conventional population-based methods

Performance of on-the-fly (OTF) simulation method

Yang et al. (2008) Phys. Rev. E

-Agents/particles in simulation "box"

-Agents/particles -Rules are event generators

-Rule n

•Cumulative rate = $a_n = k_n$ [A][B]

-Agents/particles

•Event *n* is chosen to fire using Gillespie algorithm

-Rule n

•Cumulative rate = a_n

-Agents/particles

-Agents/particles

Rule transformation is applied

-Rule n

•Cumulative rate = a_n

Kinetic Monte Carlo method for "network-free" simulation of rule-based models

- 1. Instantiate molecules with components and states.
- 2. Determine cumulative rate for each *m*th reaction type,

$$r_m = k_m \prod_{n=1}^{n_m} N_n$$

3. Select next reaction time,

$$\Delta t = -\ln(z_1)/r_{tot}$$

4. Select next reaction type using the following condition:

$$\sum_{j=1}^{J-1} r_j < z_2 r_{tot} \le \sum_{j=1}^{J} r_j$$

- 5. Select reactant molecules and **check context**.
- 6. Update lists. Iterate.

List updates:

Ligand capture

$$\mathbf{F}_{L}^{3D} = \{..., \{i, 3\}, \{i, 2\}, \{i, 1\}, ...\}$$

$$\mathbf{F}_{L}^{2D} = \{..., \{i, 3\}, \{i, 2\}, ...\}$$

$$\mathbf{F}_{L}^{2D} = \{..., \{i, 3\}, \{i, 2\}, ...\}$$

$$\mathbf{B} = \{..., \{i, 1\}, \{j, 1\}\}, ...\}$$

$$\mathbf{F}_{L}^{2D} = \{..., \{i, 2\}, \{i, 3\}, ...\}$$

$$\mathbf{F}_{R} = \{..., \{j, 2\}, ...\}$$

$$\mathbf{B} = \{..., \{\{i, 2\}, \{j, 2\}\}, ...\}$$

Yang et al. (2008) Phys. Rev. E, 78:031910

Danos et al. (2007) Lect. Notes Comp. Sci.

Conclusions

- Mechanistic models of cell signaling systems can be formulated via the rule -based modeling approach, simulated and used, for example, to provide a mechanistic interpretation of temporal phosphoproteomic data (not shown)
- Comprehensive models of cell signaling systems (on the way) should serve as launching pads for investigating a wide array of issues related to development of predictive models for cell signaling systems
 - What is required for model validation?
 - What are the best strategies for certification (e.g., model-guided experimental design)?
 - Can we quantify and track how consistent a model is with available knowledge?

Outline

- 1. The motivation for rule-based modeling
- 2. Basic concepts of rule-based modeling
- 3. An example model specification
- 4. Methods for simulating a model
- 5. Suggested exercise

